
1

The Trilinos Software Lifecycle Model
Michael A. Heroux, Presenter

James M. Willenbring

Robert T. Heaphy

Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy under contract DE-AC04-94AL85000.

Trilinos Contributors
Chris Baker

Developer of Anasazi, RBGen

Ross Bartlett

Lead Developer of MOOCHO, Stratimikos, RTOp,

Thyra

Developer of Rythmos

Paul Boggs

Developer of Thyra

Erik Boman

Lead Developer Isorropia

Todd Coffey

Lead Developer of Rythmos

Jason Cross

Developer of Jpetra

David Day

Developer of Komplex

Clark Dohrmann

Lead developer of CLAPS

Michael Gee

Developer of ML, Moertel, NOX

Bob Heaphy

Lead developer of Trilinos SQA

Mike Heroux

Trilinos Project Leader

Lead Developer of Epetra, AztecOO,

Kokkos, Komplex, IFPACK, Thyra, Tpetra

Developer of Amesos, Belos, EpetraExt, Jpetra,

Teuchos

Ulrich Hetmaniuk

Developer of Anasazi

Robert Hoekstra

Lead Developer of EpetraExt

Developer of Epetra, Thyra, Tpetra

Russell Hooper

Developer of NOX

Vicki Howle

Lead Developer of Meros

Developer of Belos and Thyra

Jonathan Hu

Developer of ML

Sarah Knepper

Developer of Komplex

Tammy Kolda

Lead Developer of NOX

Joe Kotulski

Lead Developer of Pliris

Rich Lehoucq

Developer of Anasazi and Belos

Kevin Long

Lead Developer of Thyra

Developer of Belos and Teuchos

Roger Pawlowski

Lead Developer of NOX

Michael Phenow

Trilinos Webmaster

Lead Developer of New_Package

Developer WebTrilinos

Eric Phipps

Lead developer Sacado

Developer of LOCA, NOX

Dennis Ridzal

Lead Developer of Aristos

Marzio Sala

Lead Developer of Didasko, Galeri, IFPACK, WebTrilinos

Developer of ML, Amesos

Andrew Salinger

Lead Developer of LOCA, Capo

Paul Sexton

Developer of Epetra and Tpetra

Bob Shuttleworth

Developer of Meros.

Chris Siefert

Developer of ML

Bill Spotz

Lead Developer of PyTrilinos

Developer of Epetra, New_Package

Ken Stanley

Lead Developer of Amesos and New_Package

Heidi Thornquist

Lead Developer of Anasazi, Belos, RBGen and Teuchos

Ray Tuminaro

Lead Developer of ML and Meros

Jim Willenbring

Developer of Epetra and New_Package.

Trilinos library manager

Alan Williams

Lead Developer Isorropia

Developer of Epetra, EpetraExt, AztecOO, Tpetra

3

Background/Motivation

4

Target Problems: PDES and more…

PDES

Circuits

Inhomogeneous

Fluids

And More…

5

Target Platforms: Any and All
(Now and in the Future)

 Desktop: Development and more…

 Capability machines:

 Redstorm (XT3), Clusters

 Roadrunner (Cell-based).

 Large-count multicore nodes.

 Parallel software environments:

 MPI of course.

 UPC, CAF, threads, vectors,…

 Combinations of the above.

 User “skins”:

 C++/C, Python

 Fortran.

 Web, CCA.

6

Motivation For Trilinos
 Sandia does LOTS of solver work.

 When I started at Sandia in May 1998:
 Aztec was a mature package. Used in many codes.

 FETI, PETSc, DSCPack, Spooles, ARPACK, DASPK, and many
other codes were (and are) in use.

 New projects were underway or planned in multi-level
preconditioners, eigensolvers, non-linear solvers, etc…

 The challenges:
 Little or no coordination was in place to:

• Efficiently reuse existing solver technology.

• Leverage new development across various projects.

• Support solver software processes.

• Provide consistent solver APIs for applications.

 ASCI (now ASC) was forming software quality
assurance/engineering (SQA/SQE) requirements:

• Daunting requirements for any single solver effort to address alone.

7

Evolving Trilinos Solution

 Trilinos1 is an evolving framework to address these challenges:
 Fundamental atomic unit is a package.

 Includes core set of vector, graph and matrix classes (Epetra/Tpetra packages).

 Provides a common abstract solver API (Thyra package).

 Provides a ready-made package infrastructure (new_package package):

• Source code management (cvs, bonsai).

• Build tools (autotools).

• Automated regression testing (queue directories within repository).

• Communication tools (mailman mail lists).

 Specifies requirements and suggested practices for package SQA.

 In general allows us to categorize efforts:
 Efforts best done at the Trilinos level (useful to most or all packages).

 Efforts best done at a package level (peculiar or important to a package).

 Allows package developers to focus only on things that are unique to
their package.

1. Trilinos loose translation: “A string of pearls”

8

Trilinos Strategic Goals
 Scalable Solvers: As problem size and processor counts increase, the

cost of the solver will remain a nearly fixed percentage of the total
solution time.

 Hardened Solvers: Never fail unless problem essentially unsolvable,
in which case we diagnose and inform the user why the problem fails
and provide a reliable measure of error.

 Full Vertical Coverage: Provide leading edge capabilities from basic
linear algebra to transient and optimization solvers.

 Grand Universal Interoperability: All Trilinos packages will be
interoperable, so that any combination of solver packages that
makes sense algorithmically will be possible within Trilinos.

 Universal Accessibility: All Trilinos capabilities will be available to
users of major computing environments: C++, Fortran, Python, Web

 Universal Solver RAS: Trilinos will be:
 Integrated into every major application at Sandia (Availability).

 The leading edge hardened, efficient, scalable solutions for each of these
applications (Reliability).

 Easy to maintain and upgrade within the application environment
(Serviceability).

Algorithmic

Goals

Software

Goals

Trilinos Statistics

Stats: Trilinos Download Page 05/14/2007.

280

42

57

307

165

263

82

141

12

1349

Trilinos Statistics by Release

22

22

16

5.48

4.40

9

27

26

26

17

7.16

7.36

11

30

29

27

18

8.95

10.21

19

33

32

30

27

9.54

13.49

28

35

0 10 20 30 40

Packages in

repository

Limited release

packages

General release

packages

Source lines

(100K)

Downloads

(100s)

Automated

Regression

Tested packages

Developers

Counts

Release 7.0 (9/06)

Release 6.0 (9/05)

Release 5.0 (3/05)

Release 4.0 (6/04)

Registered Users by Type (1618 Total)

918

307

183

172
38

University

Government

Personal

Industry

Other

Registered Users by Region (1618 Total)

576

502

208

216

76

24

16

Europe

US (except Sandia)

Sandia (includes
unregistered)

Asia

Americas (except US)

Australia/NZ

Africa

10

Trilinos Package Concepts

Package: The Atomic Unit

11

Trilinos Packages

 Trilinos is a collection of Packages.

 Each package is:
 Focused on important, state-of-the-art algorithms in its problem

regime.

 Developed by a small team of domain experts.

 Self-contained: No explicit dependencies on any other software
packages (with some special exceptions).

 Configurable/buildable/documented on its own.

 Sample packages: NOX, AztecOO, ML, IFPACK, Meros.

 Special package collections:
 Petra (Epetra, Tpetra, Jpetra): Concrete Data Objects

 Thyra: Abstract Conceptual Interfaces

 Teuchos: Common Tools.

 New_package: Jumpstart prototype.

Objective Package(s)

Linear algebra objects Epetra, Jpetra, Tpetra

Krylov solvers AztecOO, Belos, Komplex

ILU-type preconditioners AztecOO, IFPACK

Multilevel preconditioners ML, CLAPS

Eigenvalue problems Anasazi

Block preconditioners Meros

Direct sparse linear solvers Amesos

Direct dense solvers Epetra, Teuchos, Pliris

Abstract interfaces Thyra

Nonlinear system solvers NOX, LOCA

Time Integrators/DAEs Rythmos

C++ utilities, (some) I/O Teuchos, EpetraExt, Kokkos

Trilinos Tutorial Didasko

“Skins” PyTrilinos, WebTrilinos, Star-P, Stratimikos, ForTrilinos

Optimization MOOCHO, Aristos

Archetype package NewPackage

Other new in 7.0 (8.0) Galeri, Isorropia, Moertel, RTOp, Aristos, RBGen

Trilinos

Package

Summary

13

Package Maturation Process

Asynchronicity

14

Day 1 of Package Life

 CVS: Each package is self-contained in Trilinos/package/ directory.

 Bugzilla: Each package has its own Bugzilla product.

 Bonsai: Each package is browsable via Bonsai interface.

 Mailman: Each Trilinos package, including Trilinos itself, has four mail
lists:

 package-checkins@software.sandia.gov

• CVS commit emails. “Finger on the pulse” list.

 package-developers@software.sandia.gov

• Mailing list for developers.

 package-users@software.sandia.gov

• Issues for package users.

 package-announce@software.sandia.gov

• Releases and other announcements specific to the package.

 New_package (optional): Customizable boilerplate for

 Autoconf/Automake/Doxygen/Python/Thyra/Epetra/TestHarness/Website

15

Sample Package Maturation Process

Step Example

Package added to CVS: Import existing code or start

with new_package.

ML CVS repository migrated into Trilinos (July 2002).

Mail lists, Bugzilla Product, Bonsai database

created.

ml-announce, ml-users, ml-developers, ml-checkins, ml-

regression @software.sandia.gov created, linked to CVS (July

2002).

Package builds with configure/make, Trilinos-

compatible

ML adopts Autoconf, Automake starting from new_package

(June 2003).

Epetra objects recognized by package. ML accepts user data as Epetra matrices and vectors (October

2002).

Package accessible via Thyra interfaces. ML adaptors written for TSFCore_LinOp (Thyra) interface

(May 2003).

Package uses Epetra for internal data. ML able to generate Epetra matrices. Allows use of AztecOO,

Amesos, Ifpack, etc. as smoothers and coarse grid solvers (Feb-

June 2004).

Package parameters settable via Teuchos

ParameterList

ML gets manager class, driven via ParameterLists (June 2004).

Package usable from Python (PyTrilinos) ML Python wrappers written using new_package template

(April 2005).

Startup Steps Maturation Steps

16

Maturation Jumpstart: NewPackage
 NewPackage provides jump start to develop/integrate a new package

 NewPackage is a “Hello World” program and website:

 Simple but it does work with autotools.

 Compiles and builds.

 NewPackage directory contains:

 Commonly used directory structure: src, test, doc, example, config.

 Working Autoconf/Automake files.

 Documentation templates (doxygen).

 Working regression test setup.

 Working Python and Thyra adaptors.

 Substantially cuts down on:

 Time to integrate new package.

 Variation in package integration details.

 Development of website.

NOTE: NewPackage can be used independent from Trilinos

17

SQA/SQE

 Software Quality Assurance/Engineering is important.

 Not sufficient to say, “We do a good job.”

 Trilinos facilitates SQA/SQE development/processes for

packages:

 10 of 30 ASC SQE practices are directly handled by Trilinos (no

requirements on packages).

 Trilinos provides infrastructure support for the remaining 20.

 Trilinos Dev Guide Part II: Specific to ASC requirements.

 Trilinos software engineering policies provide a ready-made

infrastructure for new packages.

 Trilinos philosophy:

Few requirements. Instead mostly suggested practices. Provides

package with option to provide alternate process.

18
Trilinos Service SQE Practices Impact

Yearly Trilinos User Group Meeting (TUG) and Developer Forum:

Once a year gathering for tutorials, package feature updates,

user/developer requirements discussion and developer training.

— All Requirements steps: gathering,

derivation, documentation, feasibility,etc.

— User and Developer training.

Monthly Trilinos leaders meetings:

Trilinos leaders, including package development leaders, key managers,

funding sources and other stakeholders participate in monthly phone

meetings to discuss any timely issues related to the Trilinos Project.

—Developer Training.

—Design reviews.

—Policy decisions across all development

phases.

Trilinos and package mail lists:

Trilinos lists for leaders, announcements, developers, users, checkins and

similar lists at the package level support a variety of communication. All

lists are archived, providing critical artifacts for assessments and audits.

—Developer/user/client communication.

—Requirements/design/testing artifacts.

—Announcement/documenting of releases.

Trilinos and Trilinos3PL source repositories:

All source code, development and user documentation is retained and

tracked. In addition, reference versions of all external software, including

BLAS, LAPACK, Umfpack, etc. are retained in Trilinos3PL.

—Source management.

—Versioning.

—Third-party software management.

Bugzilla Products:

Each package has its own Bugzilla Product with standard components.

—Requirements/faults capturing and

tracking.

Trilinos configure script and M4 macros:

The Trilinos configure script and related macros support portable

installation of Trilinos and its packages

—Portability.

—Software release.

Trilinos test harness:

Trilinos provides a base testing plan and automated testing across

multiple platforms, plus creation of testing artifacts. Test harness results

are used to derive a variety of metrics for SQE.

—Pre-checkin and regression testing.

—Software metrics.

19

Trilinos Availability/Information

 Trilinos and related packages are available via LGPL.

 Current release (7.0) is “click release”. Unlimited availability.

 Trilinos Release 8: August 2007.

 Trilinos Awards:
 2004 R&D 100 Award.

 SC2004 HPC Software Challenge Award.

 Sandia Team Employee Recognition Award.

 Lockheed-Martin Nova Award Nominee.

 More information:
 http://trilinos.sandia.gov

 http://software.sandia.gov

 Additional documentation at my website:
http://www.cs.sandia.gov/~mheroux.

 5th Annual Trilinos User Group Meeting: November 6-8, 2007 at
Sandia National Laboratories, Albuquerque, NM, USA.

20

Software Lifecycles

21

(Typical) Project Lifecycle

Project

Conception

Support &

Maintenance

Research &

Development
Production

End

of

Life

Consider this lifecycle

22

Scientific Research and Life Cycle

Models
 Life Cycle Models are generally developed from the point

of view of business software.

 Little consideration is given to algorithmic development.

 Traditional business execution environment is traditional

mainframe or desktop, not parallel computers.

 Traditional development “techniques” are assumed.

23

Research Software needs a different

model
 Research should be “informal”:

 Allow external collaborators, students, post-docs, etc.

 Allow changes of direction without seeking permission

 Should use modern software development paradigms

• i.e. Lean/Agile methods

 Must be verified more than validated

 Production code must:

 Have formality appropriate to risks,

 Be Complete (documentation, testing, …),

 Be “user proofed”,

 Be platform independent (as necessary),

 Be validated not just verified.

24

“Promotional” Model

Phase k Phase k+1
Promotional

Event

•Lower formality

•Fewer Artifacts

•Lean/Agile

•Higher formality

•Sufficient Artifacts

•Bullet proof

•Maintainable

25

Trilinos Software Lifecycle Model

26

Lifecycle Models

 A major component of any software project.

 Exists, whether formal or ad hoc.

 Trilinos model:

 Really a meta-model.

 Attempts to captures the reality of our software engineering

environment.

27

Trilinos Software Environment

 Many formal software lifecycle models exist.

 Trilinos environment seems somewhat unique:
(When compared to commercial environments, or not?)

 On one hand: Tasked to develop algorithms and software
that are leading-edge, with the goal of solving problems
that were previously intractable.

 On the other: Required to deliver software that can
eventually be used to certify critically important
engineering systems.

28

Further Complexities

 Trilinos composed of packages:

 Self-contained pieces of software developed by semi-
independent small teams.

 Each package matures at its own pace:
• Typically evolving from small algorithms study.

• Becoming a widely-used piece of software.

• Embedded in multiple applications.

 Requirements for rigor change as a particular
Trilinos package matures.

29

Trilinos Lifecycle Phases

 Three phases:

 Research.

 Production Growth.

 Production Maintenance.

 Each phase contains its own lifecycle model.

 Promotional events:

 Required for transition from one phase to next.

 Signify change in behaviors and attitude.

 Phase assigned individually to each package.

30

Lifecycle Phase 1: Research

 Conducting research is the primary goal.

 Producing software is potentially incidental to
research.

 Any software that is produced is typically a “proof
of concept” or prototype.

 Software that is in this phase may only be released
to selected internal customers to support their
research or development and should not be treated
as production quality code.

31

Phase 1 Required Practices

 The research proposal is the project plan.

 Software is placed under configuration control as
needed to prevent loss due to disaster.

 Peer reviewed published papers are primary
verification and validation.

 The focus of testing is a proof of correctness, not
software.

 Periodic status reports should be produced,
presentation is sufficient.

 A lab notebook, project notebook, or equivalent is
the primary artifact.

32

Phase 1 Remarks

 Phase 1 practices are common to efficient research
in general.

 Research phase software:

 Need not be written in the “target” language.

 Nor support all target machines.

 Usually has limited error checking and recovery.

 (Software) risk is low (primarily technical, not
mitigated formality processes.

 Level of formality is low.

33

Phase 2: Production Growth

Goals:

1. Elevate package to releasable product.

2. Satisfy the Advanced Scientific Computing

(ASC) Software Quality Plan, at a minimum.

3. Make software product suitable for use by

highly skilled users.

34

Phase 1 2 Promotion Event

Risk Assessment:
1. What are the package’s primary technical and project management

risks?

2. How can these risks be mitigated?

Gap Analysis:
1. Which practices and processes must be added or improved to get the

package into a releasable state?

2. What special actions or training will be required?

3. What is the target date for complying with the level of practices and
processes required for release?

Promotion Decision:
1. Considering the results of the risk assessment, gap analysis, and

other data, will the package be promoted to Phase 2?

2. What is the target date for releasing the package?

35

Phase 2 Required Practices
(Most Important)

1. Agile methods (with associated lifecycles) are

encouraged, for example the practices and

processes promoted by Extreme Programming .

2. All essential ASC SQE practices performed at an

appropriate level (predetermined during promotion

event from the research phase).

3. Artifacts should naturally “fall out” from SQE

practices and periodic status reviews and

management reports.

4. Process improvement and metrics are appropriate.

36

Phase 2 Remarks

 Phase may be cyclic (spiral, etc.) as new
algorithms become incorporated.

 Software may not yet support all intended
missions or platforms.

 Risk level is medium:

 Technical risks are reduced.

 Total risk is more project management oriented such as
schedule, budget, staffing, etc.).

 Default level of formality is medium.

37

Phase 3: Production Maintenance

 Goal: Robust software suitable for typical end uses.

 At this point:
 Requirements and prototype software foundation are stable.

 However, Agile methods no long sufficient:

• Product maintenance during the coming decades of software use
where typically only adaptive maintenance

• Response to computer system changes.

 More complete set of artifact is required.

 Software itself will require changes to improve
maintainability.

 In extreme case: May make sense to rewrite large portions.

38

Phase 2 3 Promotional Event

Risk Assessment:
1. What are the package’s primary technical and project

management risks?

2. How can these risks be mitigated?

Gap Analysis:
1. Which practices and processes must be added or improved to

get the package into a maintenance ready state?

2. What is the target date for complying with the required level

of practices and processes?

39

Phase 2 3 Promotional Event
(cont)

Promotion Decision:
• What is the medium to long-term funding outlook for the package?

• Who is going to provide long-term maintenance services for the
project? (One or more of the original developers, or a different
group?)

• If funding is not likely to be available for future maintenance, current
customers should be notified so they have a chance to offer continued
funding if it is in their best interest. A list of these customers should
be produced.

• If the customer base of the package is small or the package has been
replaced with another code, the development team may consider
retiring the code rather than moving to the third development phase.
Any such decision should be approved by customers and
management.

• Considering the answers to the above questions, and other available
data, will the package be promoted to Phase 3?

• What is the target date (if any) for turning the package over to the
long-term maintenance team?

40

Phase 3: Required Practices

1. After achieving maintenance ready status, the package may
(as determined during the promotion event) be handed over to
another party during this phase for continued support and
development.

2. If the code is transferred to a different party, the ownership of
the design is not necessarily transferred. The design owner
must attend meetings concerning requirements changes and
potential design changes.

3. A widely-accepted lifecycle model such as the Waterfall or
Unified Process methods is used.

4. End of life planning is a key component during this phase. In
particular, the software must have good compliance with SQE
practices and internal documentation must be formal (UML is
suggested).

5. SQE practice compliance and solid documentation will help
to ensure a successful transfer of the code, and must be
completed whether a transfer is currently planned or not.

41

Phase 3 Remarks

 The risk level is low (almost totally project management

risks, which can be mitigated by appropriate process

formality). The default level of formality is high

(particularly if the project may be handed off to another

party).

 This phase is untested so far.

 Moving to this phase is expensive.

42

Exceptional Cases

 Isolated Lower Phase:
 Multiple techniques:

• Subdirectories: All lower phase software is contained in specially-
designated subdirectories and is only activated by special compilation
procedures.

• Interface adapters: Lower phase software is self-contained in new
class files and accessed via polymorphism of abstract interface
mechanisms or similar techniques that are not necessary for basic
operation.

• Conditional compilation directives: discouraged in general.

 Externally-developed Packages:
 By default in Phase 1: Must go through same process.

 BLAS/LAPACK different: Certified as part of dependent-package
process.

43

Usage Status

 Lifecycle Model newly define: Gives us a target.

 25% of package firmly in Phase 1.

 75% of packages on the way to Phase 2.

 None are in Phase 3.

 Phase 3 is thus just speculation at this point.

44

Summary

 For years we have struggled to adapt to traditional lifecycle

models, with little success.

 The Trilinos Software Lifecycle Model:

 Provides tangible set of goals that seem to match our needs.

 Is a work-in-progress.

 We actively seek interaction with others who have

common environments and interests.

